Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | \(g_{23}\) | \(g_{5}+8/9g_{4}+5/9g_{3}\) | \(g_{21}\) | \(-g_{13}+5/8g_{12}\) | \(g_{19}\) |
weight | \(2\omega_{2}\) | \(2\omega_{3}\) | \(\omega_{2}+5\omega_{3}\) | \(6\omega_{3}\) | \(10\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2) | \(\displaystyle V_{\omega_{2}+5\omega_{3}} \) → (0, 1, 5) | \(\displaystyle V_{6\omega_{3}} \) → (0, 0, 6) | \(\displaystyle V_{10\omega_{3}} \) → (0, 0, 10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{2}+5\omega_{3}\) \(\omega_{1}-\omega_{2}+5\omega_{3}\) \(\omega_{2}+3\omega_{3}\) \(-\omega_{1}+\omega_{2}+5\omega_{3}\) \(\omega_{1}-\omega_{2}+3\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+5\omega_{3}\) \(-\omega_{1}+\omega_{2}+3\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}+3\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(\omega_{2}-3\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-3\omega_{3}\) \(\omega_{2}-5\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-3\omega_{3}\) \(\omega_{1}-\omega_{2}-5\omega_{3}\) \(-\omega_{2}-3\omega_{3}\) \(-\omega_{1}+\omega_{2}-5\omega_{3}\) \(-\omega_{2}-5\omega_{3}\) | \(6\omega_{3}\) \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) \(-6\omega_{3}\) | \(10\omega_{3}\) \(8\omega_{3}\) \(6\omega_{3}\) \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) \(-6\omega_{3}\) \(-8\omega_{3}\) \(-10\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{2}+5\omega_{3}\) \(\omega_{1}-\omega_{2}+5\omega_{3}\) \(\omega_{2}+3\omega_{3}\) \(-\omega_{1}+\omega_{2}+5\omega_{3}\) \(\omega_{1}-\omega_{2}+3\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+5\omega_{3}\) \(-\omega_{1}+\omega_{2}+3\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}+3\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(\omega_{2}-3\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-3\omega_{3}\) \(\omega_{2}-5\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-3\omega_{3}\) \(\omega_{1}-\omega_{2}-5\omega_{3}\) \(-\omega_{2}-3\omega_{3}\) \(-\omega_{1}+\omega_{2}-5\omega_{3}\) \(-\omega_{2}-5\omega_{3}\) | \(6\omega_{3}\) \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) \(-6\omega_{3}\) | \(10\omega_{3}\) \(8\omega_{3}\) \(6\omega_{3}\) \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) \(-6\omega_{3}\) \(-8\omega_{3}\) \(-10\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{2}+5\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+5\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+5\omega_{3}} \oplus M_{-\omega_{2}+5\omega_{3}}\oplus M_{\omega_{2}+3\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+3\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+3\omega_{3}} \oplus M_{-\omega_{2}+3\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}} \oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}} \oplus M_{-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-3\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-3\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-3\omega_{3}} \oplus M_{-\omega_{2}-3\omega_{3}}\oplus M_{\omega_{2}-5\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-5\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-5\omega_{3}} \oplus M_{-\omega_{2}-5\omega_{3}}\) | \(\displaystyle M_{6\omega_{3}}\oplus M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\oplus M_{-6\omega_{3}}\) | \(\displaystyle M_{10\omega_{3}}\oplus M_{8\omega_{3}}\oplus M_{6\omega_{3}}\oplus M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}} \oplus M_{-6\omega_{3}}\oplus M_{-8\omega_{3}}\oplus M_{-10\omega_{3}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{2}+5\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+5\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+5\omega_{3}} \oplus M_{-\omega_{2}+5\omega_{3}}\oplus M_{\omega_{2}+3\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+3\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+3\omega_{3}} \oplus M_{-\omega_{2}+3\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}} \oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}} \oplus M_{-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-3\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-3\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-3\omega_{3}} \oplus M_{-\omega_{2}-3\omega_{3}}\oplus M_{\omega_{2}-5\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-5\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}-5\omega_{3}} \oplus M_{-\omega_{2}-5\omega_{3}}\) | \(\displaystyle M_{6\omega_{3}}\oplus M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\oplus M_{-6\omega_{3}}\) | \(\displaystyle M_{10\omega_{3}}\oplus M_{8\omega_{3}}\oplus M_{6\omega_{3}}\oplus M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}} \oplus M_{-6\omega_{3}}\oplus M_{-8\omega_{3}}\oplus M_{-10\omega_{3}}\) |