Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | g23 | g5+8/9g4+5/9g3 | g21 | −g13+5/8g12 | g19 |
weight | 2ω2 | 2ω3 | ω2+5ω3 | 6ω3 | 10ω3 |
Isotypical components + highest weight | V2ω2 → (0, 2, 0) | V2ω3 → (0, 0, 2) | Vω2+5ω3 → (0, 1, 5) | V6ω3 → (0, 0, 6) | V10ω3 → (0, 0, 10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | ω2+5ω3 ω1−ω2+5ω3 ω2+3ω3 −ω1+ω2+5ω3 ω1−ω2+3ω3 ω2+ω3 −ω2+5ω3 −ω1+ω2+3ω3 ω1−ω2+ω3 ω2−ω3 −ω2+3ω3 −ω1+ω2+ω3 ω1−ω2−ω3 ω2−3ω3 −ω2+ω3 −ω1+ω2−ω3 ω1−ω2−3ω3 ω2−5ω3 −ω2−ω3 −ω1+ω2−3ω3 ω1−ω2−5ω3 −ω2−3ω3 −ω1+ω2−5ω3 −ω2−5ω3 | 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 | 10ω3 8ω3 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 −8ω3 −10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | ω2+5ω3 ω1−ω2+5ω3 ω2+3ω3 −ω1+ω2+5ω3 ω1−ω2+3ω3 ω2+ω3 −ω2+5ω3 −ω1+ω2+3ω3 ω1−ω2+ω3 ω2−ω3 −ω2+3ω3 −ω1+ω2+ω3 ω1−ω2−ω3 ω2−3ω3 −ω2+ω3 −ω1+ω2−ω3 ω1−ω2−3ω3 ω2−5ω3 −ω2−ω3 −ω1+ω2−3ω3 ω1−ω2−5ω3 −ω2−3ω3 −ω1+ω2−5ω3 −ω2−5ω3 | 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 | 10ω3 8ω3 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 −8ω3 −10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | Mω2+5ω3⊕M−ω1+ω2+5ω3⊕Mω1−ω2+5ω3⊕M−ω2+5ω3⊕Mω2+3ω3⊕M−ω1+ω2+3ω3⊕Mω1−ω2+3ω3⊕M−ω2+3ω3⊕Mω2+ω3⊕M−ω1+ω2+ω3⊕Mω1−ω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω1+ω2−ω3⊕Mω1−ω2−ω3⊕M−ω2−ω3⊕Mω2−3ω3⊕M−ω1+ω2−3ω3⊕Mω1−ω2−3ω3⊕M−ω2−3ω3⊕Mω2−5ω3⊕M−ω1+ω2−5ω3⊕Mω1−ω2−5ω3⊕M−ω2−5ω3 | M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3 | M10ω3⊕M8ω3⊕M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3⊕M−8ω3⊕M−10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | Mω2+5ω3⊕M−ω1+ω2+5ω3⊕Mω1−ω2+5ω3⊕M−ω2+5ω3⊕Mω2+3ω3⊕M−ω1+ω2+3ω3⊕Mω1−ω2+3ω3⊕M−ω2+3ω3⊕Mω2+ω3⊕M−ω1+ω2+ω3⊕Mω1−ω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω1+ω2−ω3⊕Mω1−ω2−ω3⊕M−ω2−ω3⊕Mω2−3ω3⊕M−ω1+ω2−3ω3⊕Mω1−ω2−3ω3⊕M−ω2−3ω3⊕Mω2−5ω3⊕M−ω1+ω2−5ω3⊕Mω1−ω2−5ω3⊕M−ω2−5ω3 | M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3 | M10ω3⊕M8ω3⊕M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3⊕M−8ω3⊕M−10ω3 |