Subalgebra B12+A351C15
87 out of 119
Computations done by the calculator project.

Subalgebra type: B12+A351 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C15

Elements Cartan subalgebra scaled to act by two by components: B12: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, A351: (0, 0, 10, 16, 9): 70
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g25, g1, g3+g4+g5
Positive simple generators: g25, g1, 9g5+8g4+5g3
Cartan symmetric matrix: (210110002/35)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2202400070)
Decomposition of ambient Lie algebra: V10ω3V6ω3Vω2+5ω3V2ω3V2ω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra.g23g5+8/9g4+5/9g3g21g13+5/8g12g19
weight2ω22ω3ω2+5ω36ω310ω3
Isotypic module decomposition over primal subalgebra (total 5 isotypic components).
Isotypical components + highest weightV2ω2 → (0, 2, 0)V2ω3 → (0, 0, 2)Vω2+5ω3 → (0, 1, 5)V6ω3 → (0, 0, 6)V10ω3 → (0, 0, 10)
Module label W1W2W3W4W5
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g23
g24
g1
2g25
2h1
2h5+4h4+4h3+4h2+4h1
2g25
2g1
2g24
4g23
Semisimple subalgebra component.
9/5g58/5g4g3
9/5h5+16/5h4+2h3
2/5g3+2/5g4+2/5g5
g21
g22
g18
g6
g20
g15
g2
g10
g17
g11
g7
g14
g14
g7
g11
g17
g10
g2
g15
g20
g6
g18
g22
g21
g13+5/8g12
3/8g95/8g8
3/4g51/4g4+5/8g3
3/4h5+1/2h45/4h3
3/2g3+3/8g4+g5
15/8g85/8g9
5/4g12+5/4g13
g19
g16
2g13+g12
3g9g8
6g54g4+g3
6h5+8h42h3
6g3+15g420g5
21g8+35g9
56g1270g13
126g16
252g19
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
ω2+5ω3
ω1ω2+5ω3
ω2+3ω3
ω1+ω2+5ω3
ω1ω2+3ω3
ω2+ω3
ω2+5ω3
ω1+ω2+3ω3
ω1ω2+ω3
ω2ω3
ω2+3ω3
ω1+ω2+ω3
ω1ω2ω3
ω23ω3
ω2+ω3
ω1+ω2ω3
ω1ω23ω3
ω25ω3
ω2ω3
ω1+ω23ω3
ω1ω25ω3
ω23ω3
ω1+ω25ω3
ω25ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
10ω3
8ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
8ω3
10ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
ω2+5ω3
ω1ω2+5ω3
ω2+3ω3
ω1+ω2+5ω3
ω1ω2+3ω3
ω2+ω3
ω2+5ω3
ω1+ω2+3ω3
ω1ω2+ω3
ω2ω3
ω2+3ω3
ω1+ω2+ω3
ω1ω2ω3
ω23ω3
ω2+ω3
ω1+ω2ω3
ω1ω23ω3
ω25ω3
ω2ω3
ω1+ω23ω3
ω1ω25ω3
ω23ω3
ω1+ω25ω3
ω25ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
10ω3
8ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
8ω3
10ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3Mω2+5ω3Mω1+ω2+5ω3Mω1ω2+5ω3Mω2+5ω3Mω2+3ω3Mω1+ω2+3ω3Mω1ω2+3ω3Mω2+3ω3Mω2+ω3Mω1+ω2+ω3Mω1ω2+ω3Mω2+ω3Mω2ω3Mω1+ω2ω3Mω1ω2ω3Mω2ω3Mω23ω3Mω1+ω23ω3Mω1ω23ω3Mω23ω3Mω25ω3Mω1+ω25ω3Mω1ω25ω3Mω25ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M10ω3M8ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M8ω3M10ω3
Isotypic characterM2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3Mω2+5ω3Mω1+ω2+5ω3Mω1ω2+5ω3Mω2+5ω3Mω2+3ω3Mω1+ω2+3ω3Mω1ω2+3ω3Mω2+3ω3Mω2+ω3Mω1+ω2+ω3Mω1ω2+ω3Mω2+ω3Mω2ω3Mω1+ω2ω3Mω1ω2ω3Mω2ω3Mω23ω3Mω1+ω23ω3Mω1ω23ω3Mω23ω3Mω25ω3Mω1+ω25ω3Mω1ω25ω3Mω25ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M10ω3M8ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M8ω3M10ω3

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 420.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (300.00, 470.00)
1: (0.00, 1.00, 0.00): (250.00, 470.00)
2: (0.00, 0.00, 1.00): (200.00, 420.00)




Made total 10737 arithmetic operations while solving the Serre relations polynomial system.